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Figure 2. Alternating current voltammetry12 of 0-aminoanthraquinone 
adsorbed on acrylyl chloride treated oxide-free graphite, A, and untreated 
graphite with normal surface oxides, B (potential vs. Ag/AgCl(s); numbers 
indicate scan sequence). 

hours. The sample was next immersed in a stirred solution of 
/3-aminoanthraquinone, IV, in dry pyridine and finally washed 
with fresh pyridine and acetone. The successful preparation 
of surface derivative V was evidenced by the electrochemis­
try. 

The sample was mounted in a kel-F holder which masked 
all but a single, edge-oriented surface. Voltammetric mea­
surements were made using the graphite as working electrode 
in a three-electrode cell filled with 0.1 M tetrabutylammonium 
perchlorate in acetonitrile. In conventional cyclic voltammetry 
the faradaic current was poorly resolved from the very large 
capacitive component. Consequently, first-harmonic ac vol­
tammetry was employed12 using phase-selective rectification 
of the faradaic current. 

Figure 2A shows the first four consecutive scans of freshly 
prepared sample (dc potential was scanned from —0.5 to — 1.4 
V). The ac current peaks correspond closely to the reversible 
half-wave potential for one-electron reduction of IV. (Mea­
surements with an independent working electrode could detect 
no quinone free in solution before or after the experiment.) The 
peak diminishes significantly between the first and second 
cathodic cycles but remains constant for all successive scans. 
The change is due to the fact that a fraction of quinone is only 
physically adsorbed on the surface and is desorbed following 
reduction to the anion radical, as demonstrated by the fol­
lowing control experiment. 

The exposed surface of the sample was renewed by brief-

polishing on a ground glass plate. This process exposes fresh 
edge-oriented surface which immediately becomes covered 
with surface oxides, and results in complete disappearance of 
the cathodic peak. A freshly resurfaced sample was treated 
with the pyridine solution of IV, washed, and remounted as 
before. Figure 2B shows the first three cathodic cycles. Phys­
ically adsorbed IV is detected on the first scan and is com­
pletely removed by the third. These experiments demonstrate 
that the covalently bound acid chloride is required for the 
chemisorption of IV. 

Our continuing efforts are directed at more detailed char­
acterization of these new surface derivatives and at extending 
the variety of functional groups which may be incorporated 
by means of reactions at the oxide-free surface. 
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Isoenergetic Hydride Transfer. A Reversible, 
Phase Transition Mediated tRNA Modification 

Sir: 

Transfer RNAs contain an abundance of modified nucleo­
sides, the possible functions of which have been studied in­
tensively for years.1 In spite of such studies, and the availability 
of a detailed, three-dimensional model of one tRNA which 
illustrates the relative orientations and possible interactions 
of the modified nucleosides, the role of these species remains 
a central, unsolved problem. We wish to report a selective, 
reversible modification of tRNA by a novel, energetically 
degenerate process which is accompanied by a reversible al­
teration of the biochemical activity of the nucleic acid. The 
nature of the chemical and biochemical changes are in accord 
with predictions based on the x-ray crystallographic structure 
of yeast tRNAPhe 2 and permit verification of the importance 
of a single tertiary interaction in the maintenance of structure 
and biochemical activity of tRNA. 

7-Methylguanosine (1) is an unusual modified nucleoside 
in that it exists as a zwitterion at physiological pH. The nu­
cleoside occurs naturally in ribosomal3 and messenger4 RNAs, 
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as well as in tRNA.5 In Escherichia coli, e.g., approximately 
one-half of all tRNA isoacceptors contain 7-methylguanosine; 
in those tRNAs it resides exclusively at a single position in loop 
III.5 X-ray crystallographic analysis of yeast tRNAP h e has 
indicated that the 7-methylguanosine moiety in position 46 
forms a base triple with cytidinen and guanosine22,2 suggesting 
that this modification may serve to stabilize tRNA tertiary 
structure.6 Selective chemical alteration of 7-methylguanosine 
would thus be of interest, in that it would permit the proposed 
function of this nucleoside to be tested experimentally. 

Although numerous studies have employed chemically 
modified tRNAs,7 successful alterations at a single site have 
been much less common and there is but one example of a se­
lective, reversible tRNA modification.8 The difficulty in ef­
fecting selective modifications derives both from the presence 
within a tRNA of several hundred chemically reactive func­
tionalities and from the tertiary structure of the molecule, 
which renders inaccessible certain potentially reactive species. 
For example, 7-methylguanosine itself can be reduced with 
sodium borohydride, affording 8-hydro-7-methylguanosine 
(2) in quantitative yield.6'9 Application of this reaction to 7-
methylguanosine46 in yeast tRNA p h e proved to be more dif­
ficult, however, since the remainder of the tRNA molecule (1) 
rendered the 7-methylguanosine moiety inaccessible to bor­
ohydride at moderate temperatures6-10 and (2) contained other 
ribonucleosides known to react with NaBH4, including A74-
acetylcytidine, dihydrouridine, 1-methyladenosine, and the 
Y-nucleoside.6'1CM2 

Our interest in the selective modification of the 7-methyl­
guanosine moiety in tRNAp h e prompted us to reinvestigate the 
transformation of 1 to 2 in an effort to secure a reducing agent 
capable only of the reduction of 1, as compared with the other 
components of tRNAP h e . We had previously shown that re­
duced species 2 is itself a hydride transfer reagent, capable of 
the selective reduction of certain imines and immonium salts.9b 

Therefore, it seemed reasonable to anticipate that under ap­
propriate conditions nucleoside 2 would establish an equi­
librium with 7 -methylguanosine^ in tRNA phe via hydride 
transfer (Scheme I) and the use of excess 2 would result in 
virtually complete reduction of 7-methylguanosine46. Since 
the transfer of hydride from one 7-methylguanosine to another 
is an energetically degenerate process, this would represent 
essentially the mildest method possible for effecting the tRNA 
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modification of interest; in fact 2 was shown not to react with 
any of the nucleosides in tRNA known to be affected by sodi­
um borohydride. As anticipated, though, initial efforts to effect 
the reduction of 7-methylguanosine in E. coli tRNAP h e or in 
unfractionated E. coli tRNA at moderate temperatures were 
unsuccessful, owing to steric constraints imposed by the re­
mainder of the tRNA molecules.'3 

Well-defined phase transitions have been shown to accom­
pany the reversible conformational changes of tRNA which 
can be mediated, e.g., by variations in temperature, ionic 
strength, or Mg2 + concentration.14 While 7-methylguanosine 
in native (phase I) tRNA could not be reduced with compound 
2, we anticipated that this transformation might be possible 
if the experimental conditions were adjusted to alter the phase 
of the substrate tRNA (and, therefore, the accessibility of the 
nucleoside of interest). In fact slow reduction of 7-methylgu­
anosine was observed after incubation of the tRNA with nu­
cleoside 2 under phase IV conditions; interestingly, much more 
rapid transformation was noted when a more ordered phase 
II tRNA was employed. ' 5 The reduced tRNA could be reox-
idized easily while in phase II or IV via reaction with water or 
oxygen, or restored to phase I for subsequent biochemical 
measurements.16 These experiments are summarized in 
Scheme II. 

A typical procedure for the reduction of 7-methylguanosine 
moieties in tRNA under phase Il conditions is illustrated for 
unfractionated E. coli tRNA.17 A 0.5-mL incubation mixture 
containing 25 /^mol of compound 218 and 50 A?6o units of 
tRNA was maintained at 50 0 C for 5 min and then treated 
with 2 vol of cold ethanol. The precipitate was isolated by 
centrifugation, suspended in 1 mL of 0.5 M Tris HOAc, pH 
5.5, and again precipitated with ethanol. Four precipitations 
effected complete separation of the reducing agent from the 
tRNA and the extent of reduction of the 7-methylguanosine 
moieties in tRNA was monitored both by the change in fluo­
rescence and A310 values.6" A single sample of tRNA could 
be reduced and allowed to reoxidize several times, with no 
apparent net change in structure or biological activity after the 
final reoxidation. 

Aminoacylation of the modified tRN Ap h c with phenylala­
nine was assayed using the homologous aminoacyl-tRNA 
synthetase activity. Although Wintermeyer and Zachau re­
ported that yeast tRNAp h e partially reduced at position 46 was 
aminoacylated at the same rate as untreated tRNA by yeast 
and E. coli phenylalanyl-tRNA synthetases,12 in replicate 
experiments we found that E. coli tRNA p h e fully reduced at 
position 46 was aminoacylated at a faster rate than untreated 
tRNAphe; after reoxidation of the reduced tRNA, the treated 
and untreated tRNAphes were activated at the same rate.19-20 

Photochemically induced cross-linking of 4-thiouridines and 
cytidinen in E. coli tRNAP h e has been shown to be dependent 
on tRNA conformation,21 so that disruption of a preexisting 
base triple might be expected to alter the rate of cross-linking. 
In fact the untreated tRNA was observed to undergo cross-
linking almost 20% more quickly than tRNA containing 2 in 
the presence of 10 mM Mg2 + ,2 2 in agreement with the obser­
vation that E. coli tRNAfMcl having 7-methylguanosine in 
position 47 underwent cross-linking almost twice as fast as the 
same species having adenosine in position 47.6b 
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Our interpretation of these results is that reduction of 7-
methylguanosine disrupts the Cn-Gj2-Hi7G46 base triple and 
gives rise to a slightly less ordered tRNA structure. The con­
comitant, reversible change in the rate of tRNA aminoacyla-
tion and photoinduced cross-linking verifies the importance 
of 7-methylguanosine in maintenance of the tertiary structure 
of tRNA in solution. 
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Temperature Dependent Electron Spin Resonance 
Spectra of Cyclohexadienyl and Silyl-Substituted 
Cyclohexadienyl Radicals. On the Conformation 
of the Radicals1 

Sir: 

Although ESR spectra of a few relatively long-lived cyclo­
hexadienyl radicals in solution have recently been reported 
from this2 and other3 laboratories, most cyclohexadienyl 
radicals have been too reactive to give good ESR spectra in 
solution. Therefore, no study on the temperature dependence 
of the ESR spectra has been made.4 

The equilibrium structure of the cyclohexadienyl radical is 
regarded as planar, but at the same time, the energy minimum 
is rather shallow so that the radical would be expected to vi­
brate between bent structures such as I.4« The INDO calcu-

SiH3 

lations of the parent cyclohexadienyl radical predicted that the 
magnitude of the hfcc of the methylene protons should decrease 
with increasing temperature due to the increasing out-of-plane 
deformation from the planar carbon framework.48 

Our recent studies on the ESR spectra of several 6,6-disi-
lylcyclohexadienyl radicals showed that the silyl group in the 
radicals had a large 29Si isotopic hfcc due to the enhanced <r-7r 
conjugation that should be reflected in the preferred confor­
mation of the radicals at low temperature.2a Consequently, it 
seemed very interesting and also very important to examine 
the temperature dependence of the ESR spectra of cyclohex­
adienyl radicals. 

The cyclohexadienyl and silyl-substituted cyclohexadienyl 
radicals were generated by hydrogen abstraction from the 
corresponding 1,4-cyclohexadienes (eq 1). 

H R 

+ t-BuO 

H 
2 1 H 

-100 °c 3 /7^X/ 

* R—(i • Y* + t-Buon on 
4^'s R 

la, R = H; lb, R = Me3Si 
Photolysis of a mixture of 1,4-cyclohexadiene, di-tert- butyl 

peroxide, and cyclopropane (ca. 1:1:1) in the cavity of an ESR 
spectrometer5 gave a well-resolved spectrum of the cyclohex­
adienyl radical ( la) whose hfcc values agreed well with those 
of the literature:415 hfcc(gauss) ( -100 0 C) 2.65 (H2,4), 9.13 
(H,,5), 13.56(H3), 48.1 (H6). The peak-to-peak line width was 
less than 50 mG. Similarly, 2,6-bis(trimethylsilyl)cyclohex-
adienyl radical ( lb) was generated: hfcc(gauss) (—100 0 C) 
2.15 (H2,4), 8.00 (H,,5), 35.9 (H6). 
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